How Tillage, No-till, & Surface Residue Influence Soil Water Storage

Stewart Wuest
Research Soil Scientist
USDA- Agricultural Research Service
Pendleton, Oregon
Introduction

• More rain = better yield

• Actually, more *available soil water during plant growth* = better yield

• How does water get into the soil and avoid evaporation?

• We can use soil and residue management to maximize our long-term average yields.

• Water simply moves through cracks and root holes – right?
Introduction

Try to answer these practical questions:

1) If you could use zero tillage but all the surface residue was removed, or do full-width tillage with all the residue remaining on the soil surface, which would be better for water storage?

2) What if you’ve no-tilled for 10 years and now never have runoff, will tilling once set you back to year 1?

3) Is it OK if notill causes an increase in compaction?
Introduction

• ¼ of an inch of extra water = 2 bushels on a long-term average.

• Capture a little more of every precipitation event = less chance of plant stress, better yield components, more deep water for grain fill.

• Good news – The techniques that store more water are great for halting wind and water erosion! Yield and soil quality at the same time.

• My research is focused on winter wheat--summer fallow, but the principles for improving water infiltration and reducing evaporation are the same for irrigated systems.
Topics

• The Mechanics of Water Infiltration
• Soil Organic Matter
• Surface Residue
• Tillage
• Water Use by Weeds
• Available Water and Yield
• Notill
About Me

• Soil scientist, PhD 1991, University of California, Davis.

• In graduate school I worked with irrigated wheat.

• After that I worked on the STEEP On-Farm Testing project, stationed in Pullman. Lots of field work from Davenport to Dayton.

• Private research with McGregor and Craig Walters for a few years.

• 1997 started with the USDA-ARS in Pendleton.
The Data

These principles are not based on theory.
They come from:
Field measurements at research stations (Pendleton, Moro, Lind).
Lab work.
Cooperative studies with farmers and researchers.
Research reports from US and worldwide.
Most gratifying: when a farmers says “Yes, that makes sense. We have seen the same result”
The Mechanics of Water Infiltration

Three possible fates of precipitation:

1. Infiltrate
2. Runoff
3. Evaporate
Tillage--Fertility Experiment, Pendleton

disk, fertilize, cultivate, rod

plow, fertilize, cultivate, rod
The Mechanics of Water Infiltration

Fact #1: Under the soil surface, water is under tension.

Consequence #1: Water rarely flows through open spaces in the soil, it crawls from surface to surface.

(Soil cracks and root holes are not important to water infiltration!)
The Mechanics of Water Infiltration

Fact #1: Under the soil surface, water is under tension.

Consequence #1: Water rarely flows through open spaces in the soil, it crawls from surface to surface.

Fact #2: Free water on the soil surface moves downhill.

Consequence #2: If soil particles are free to move with the water, they will plug any openings where the water is penetrating the surface.

(Mobile soil creates a dense layer on the surface, which stops infiltration.)
Soil Organic Matter
Surface Residue

• Like soil organic matter, surface residue reduces soil particle separation and movement in water.

• Surface residue also reduces immediate evaporation.

• Deeper, faster penetration, faster surface drainage = more storage.
Greater surface residue consistently improves water storage in both tilled and no-till soil.
Tillage
Wasco and Moro, 7 September 2010

Cranston

McCoy

conventional tillage

no-till

sweep once

Peters

Smith

Gravimetric water content (%)

Depth (inches)
Wasco and Moro, 29 September 2010

Conventional tillage

Sweep once

No-till
Weed-free, no-till fallow soil water, Moro, OR, 2014

Gravimetric water content vs. Depth, feet for various dates:
- April 8
- May 6
- May 21
- June 11
- June 26
- July 17
- September 14
Water Use by Weeds
Data from Wayne Thompson

COVER CROP
Evapotranspiration (ET)

FALLOW
Evaporation (E)
Wheat/Fallow versus Wheat/Camelina/Fallow

Data from Bill Schillinger, WSU, Lind WA

Average of six years
Available Water and Yield
<table>
<thead>
<tr>
<th>inches of water</th>
<th>bushels per inch</th>
<th>Example</th>
<th>bushels per 1/4 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil available water at planting</td>
<td>6.6</td>
<td>2</td>
<td>13.2</td>
</tr>
<tr>
<td>Over winter gain</td>
<td>7.9</td>
<td>2</td>
<td>15.8</td>
</tr>
<tr>
<td>April rain</td>
<td>4.4</td>
<td>1</td>
<td>4.4</td>
</tr>
<tr>
<td>May rain</td>
<td>7.6</td>
<td>1</td>
<td>7.6</td>
</tr>
<tr>
<td>June rain</td>
<td>12.2</td>
<td>1</td>
<td>12.2</td>
</tr>
<tr>
<td>total</td>
<td>53.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of the plant (2.4 inch)</td>
<td>-16.4 bu</td>
<td></td>
<td>-16.4</td>
</tr>
<tr>
<td>Predicted grain yield</td>
<td></td>
<td></td>
<td>36.8</td>
</tr>
</tbody>
</table>

Information based on Schillinger et al., 2008. Winter wheat after summer fallow.
Notill
Wheat/Pea long-term plots, Pendleton

- Minimum Tillage
- Notill
- Fall Plow
- Spring Plow

Bushels per acre vs. Year (2010-2016)
• A world wide analysis of research results showed a 7.3% increase in yield with no-till versus conventional tillage in semi-arid dryland farming if stubble was retained. (Pittelkow et al., Nature, 2014)
Ten-year side-by-side yield comparisons

Winter Wheat Yield (bushels/acre)

- Chem Fallow
- Tilled Fallow

17 inch average rainfall (Expt. Station)
10.5 inch average rainfall (Echo)
Maximizing Soil Water Storage - summary

• Maximize soil organic matter at the surface (eliminate soil inversion)
• Maintain surface residue – more is better
• Minimize tillage – less is better
• Minimize weed water use
• Delay summer fallow tillage until rain is over

Stewart Wuest
USDA- Agricultural Research Service
Stewart.Wuest@ars.usda.gov