Washington Grain Commission

Wheat and Barley Research Annual Progress Reports and Final Reports

Project #: 3019 3676

Progress Report Year: _2__ of __3_ (maximum of 3 year funding cycle)

Title: Improving Spring Wheat Varieties for the Pacific Northwest

Cooperators: Mike Pumphrey, John Kuehner, Vic DeMacon, Sheri Rynearson,

Wycliffe Nyongesa

Executive summary:

The WSU spring wheat breeding program's elite material and recently released varieties continue to be the top performers is statewide variety trials and for growers. Foundation and registered seed of Ryan, Seahawk, Tekoa, Diva, Louise, and Whit soft white spring wheats, Alum, Chet, Kelse, and Glee hard red spring wheats and JD and Melba spring club wheats was produced and sold in 2017, and they accounted for ~54% of all certified spring wheat production acres in Washington. Each variety has very good to excellent end-use quality, which is a primary goal of our program to help maintain and increase the value of Washington wheat. Our newest soft white spring wheat varieties, Ryan, Seahawk, Tekoa, and Melba, have broad adaptation, superior all-around disease, grain, and agronomic traits, most desirable end-use quality, and top yield performance. They have been rapidly adopted by seed dealers and growers as seed stocks are multiplied. Kelse and Glee have been the leading hard red spring wheat varieties in the state the past few years, while Chet has been widely adopted in lower rainfall areas and Alum is rapidly increasing in acreage. The consistency, broad adaptation, disease and pest resistances, sound grain traits, most desirable end-use quality, good falling numbers, and overall performance of these varieties reflects the outputs of comprehensive wheat breeding and genetics research effort supported primarily through funding from this project.

Impact:

The WSU spring wheat breeding program is in a unique position to focus on grower opportunities and challenges, large and small. We identify and develop traits, technology, germplasm, and release varieties to meet the needs of the majority of Washington producers, whether the needs are localized or widespread. Our latest releases package excellent yields with superior quality and key yield protection traits. Our newer releases are poised to lead acreages planted in the future due to improved potential profitability for growers, and rapid industry adoption. Public wheat breeding programs at WSU and across the country payback consistently on research dollars invested. It is commonly referenced that public wheat breeding programs consistently return > ~60% on investment. With >50% of the spring wheat acres in Washington planted to WSU varieties, growers continue to realize a substantial return on research dollars invested in this program.

Outputs and Outcomes: File attached

WGC project number: 3019 3676

WGC project title: Improving Spring Wheat Varieties for the Pacific Northwest

Project PI(s): Mike Pumphrey Project initiation date: 2017

Project year: 3 of 3

Objective	Deliverable	Progress	Timeline	Communication
Develop biotic and abiotic stress	New spring wheat wheat varieties that	Newly released varieties Seahawk, Alum, Chet, Tekoa, Melba, and Ryan	Recurring annually	WSU Field days, Private company field days,
tolerant, high-yielding, and high-	are superior to existing varieties. This	continued to lead yield trials in their classes in 2017, and are rapidly		Workshops/meetings/presentations attended/given
quality hard red, soft white, club,	effort includes all four market classes of	increasing in seed availability. Each is expected to have a significant		by Pumphrey: Western Wheat Workers, WSCIA
and hard white spring wheat	spring wheat and all precipitation regions	positive economic impact for PNW growers. We had very good test plots		Annual Meeting, WSCIA Board, WA Grain
varieties for diverse Washington	in Washington state.	across regions in 2017. Good data quality is fundamental to making		Commission.
production environments.		solid selections. Our 2-gene CF breeding efforts have fully matured, and		
		outstanding variety candidates in each market class will enter statewide		Annual Wheat Life contributions as requested
		Variety Testing plots in 2018. Our attention to stable falling numbers		
		over the past five years has resulted in selection of superior lines for this		
		trait.		
Improve PNW spring wheat	Enhanced germplasm. Consistent genetic	Multiple stripe rust, aluminum tolerance, Hessian fly, and quality traits	The payback for this work will	
germplasm to strengthen long-term	gain for many desirable traits.	were selected in backcross populations for long-term parent building in	fully be realized for many	
variety development efforts/genetic		2017. A primary focus in 2017 was backcrossing Fusarium head blight	years to come as these lines	
gain.		resistance into hard red spring wheat germplasm. Extensive crossing	continue to be crossed into	
		blocks for irrigated hard red spring wheat germplasm development	existing breeding lines. We	
		were also completed. Our collaborative efforts on soft durum spring	expect this effort to result in	
		wheat with Dr. Craig Morris have increased, and multi-location yield	introgression of desirable	
		trials are now routine as we develop germplasm for breeding this	variation for yield, disease	
		potentially value-added market class.	resistance, and other	
			agronomic characters.	

Objective	Deliverable	Progress	Timeline	Communication
Discover/improve/implement	We will continue to leverage the	Several specific trials and locations were again evaluated in 2017 to help	This works has short, medium,	
scientific techniques and information	efficiency of the Spring Wheat Breeding	long term breeding efforts. Scientific products of our efforts through	and long term goals. We are	
to enhance current selection	Program to enhance traits and research	multiple projects in 2017 include 13 publications in high-quality	already using new DNA	
methods.	of direct relevance to Washington	international scientific journals. Information from these research efforts	markers discovered through	
	producers. Current examples that will	help guide specific germplasm development efforts focused on Hessian	this work to improve selection	
	continue are development of DNA	fly, stripe rust, genomic selection, high-throuput phenotyping,	for quality and pest	
	markers for useful sources of Hessian fly	association mapping, marker-assisted selection, drought tolerance, heat	resistance.	
	and stripe rust resistance, drought and	tolerance, yield, test weight, gluten strenth, etc.		
	heat tolerance loci, identification of			
	superior germplasm through association			
	mapping, screening for tolerance to			
	aluminum, development of facultative			
	wheat, screening for drought and heat			
	tolerance, development and screening of			
	mutant populations (TILLING) and the			
	development of high-throughput field			
	phenomics selection methods.			