Skip to main content Skip to navigation
Wheat & Small Grains January 2017

A Win-Win: Building Soil Health While Gaining Yield & Profit

A 375-horsepower crawler tractor pulls a 1,000-gallon tank cart and a 32-foot-wide undercutter implement during primary spring tillage plus nitrogen and sulfur fertilizer injection in May. The undercutter’s narrow­-pitched and overlapping wide V-blades slice beneath the soil at a depth of five inches to completely sever capillary channels and halt the upward movement of liquid water to retain seed-zone water in summer fallow for late-summer planting of winter wheat. Most of the winter wheat residue from the previous crop is retained on the surface to control wind erosion.

Soil health and soil quality are two synonymous terms that are defined interchangeably by the Natural Resources Conservation Service (NRCS) as follows: “Soil health, also referred to as soil quality, is the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans”. As a complicated bioecological system, soil is a living system with an abundance of diverse bacteria, fungi, and other microbes that have significant effects on soil physical and biological properties. Healthy soils provide a healthy physical, chemical, and biological environment for optimal crop growth.

Inherent soil properties that contribute to soil health, such as soil texture, are determined by the natural parent material and the environmental conditions during soil formation, in the absence of human impacts. Soil health is dynamic, rather than static, and can be degraded or improved with time as a result of soil use and management by humans. Soil degradation causes soil organic matter, fertility, structure, and biodiversity to decline and soil acidification to increase. As a result, crop productivity can decrease, crop diseases and weed problems can increase, and environmental quality can suffer.

Building soil health is becoming increasingly important worldwide. Soil imbalances in essential crop nutrients can be addressed by applying fertilizer and organic amendments. And soil chemical, physical, and biological properties can be significantly improved by adopting management practices such as no-tillage or reduced tillage.

A recently published article, Best Management Practices for Summer Fallow in the World’s Driest Rainfed Wheat Region, compares the effects of three fallow management practices on soil water dynamics, wheat stand establishment, grain yield, and economic returns. This research was conducted on two farms in the driest rainfed wheat production region in Washington (WA). At the drier site, results from the 5-year study indicated that late-planted winter wheat on no-tillage fallow was as profitable as on tilled fallow. Additionally, the study found that, at the slightly wetter site, undercutter tillage resulted in equal or greater grain yield compared with both traditional tillage and no-tillage.

Another recently published article, Wheat Farmers Adopt the Undercutter Fallow Method to Reduce Wind Erosion and Sustain Profits, surveyed 47 farmers who had been practicing undercutter tillage for several years. Farms were located in the low-rainfall (< 12 inches annually) zone of east-central WA and north-central Oregon (OR). Interviewers asked farmers to compare the agronomic and economic performance between undercutter tillage and conventional tillage. Results of this survey concluded that, on average, undercutter and conventional tillage systems have equal profitability. However, the undercutter system offers a costless air quality gain and a soil health benefit in terms of reducing wind erosion.

For questions or comments, contact Dr. Douglas L. Young (, Professor, in the School of Economic Sciences, or Dr. Bill Schillinger (, Professor, in the Department of Crop and Soil Sciences at the Washington State University.


Adjusting Wheat-Based Management Strategies for Oilseed Production

Field of canola.

Oilseeds, such as canola, are recognized as rotational crops that can benefit the agro-ecological and social-ecological systems within the traditional wheat-based cropping region of the inland Northwest Pacific. Although farmers can continue to use wheat-based farm equipment, management practices need to be adjusted specifically to canola physiology and morphology to optimize yield and quality.

A recently published article, Physiology Matters: Adjusting Wheat-Based Management Strategies for Oilseed Production, compares the physiological and morphological characteristics between wheat and oilseeds. Characteristics studied included the differences in seed size, shoot meristem, cold tolerance, and above and below ground morphology. Based on these differences, the article provides recommendations for modifying wheat management strategies, for example, planting date and fertility management, for canola production.

For questions or comments, contact Dr. William Pan at or Karen Sowers at

First Stripe Rust Update of the 2017 Season – January 2017

As many of you know, the 2016 crop season was very favorable for stripe rust due to the mild winter and early spring with temperature and moisture conditions that were favorable for rust development. In some cases, this resulted in severe rust in fields planted to susceptible varieties and/or multiple fungicide applications to limit rust… » More ...

Dark Northern Spring

‘DNS’ is a common term when referring to the production of hard red spring wheat. Around the coffee shop you may hear your neighbor say, “I’m growing DNS.”

What is DNS? DNS is short for ‘Dark Northern Spring’ –and what is that?

Under the Official United States Standards for Grain, the market class ‘Hard Red Spring wheat’ is divided into three subclasses: Dark Northern Spring wheat, Northern Spring wheat, and Red Spring wheat.

What differentiates the sub-classes? It is the percentage of “dark, hard, and vitreous kernels”. To be classed as Dark Northern Spring wheat, the sample must have 75 percent or more dark, hard, and vitreous kernels. The limits for Northern Spring wheat are more than 25% but less than 75% dark, hard, and vitreous kernels; and Red Spring wheat has less than 25%.

Beyond the official market classification, the grain trade may impose any number of additional criteria. For example, to receive top prices, ‘DNS’ often must have a minimum of 14% protein. Some elevators may discount grain below this threshold with a sliding scale and may reward higher protein levels with premiums.

The Standards harken back to a time when analyzing protein was slow and laborious. In a very general sense, the percentage of vitreous kernels is correlated with protein content. And so at one time, a quick visual assessment of the percentage of vitreous kernels was a reasonable proxy for protein content. Why protein so important? Generally speaking, protein content has a direct relationship to gluten content, and as you may know, gluten is the visco-elastic (rubbery) material that allows us to make light airy yeast-leavened bread. I often refer to gluten as the ‘horsepower’ of wheat and so from bakers to millers to the elevator to the producer, higher protein is usually rewarded with premium prices because of its greater performance and value.

For more information contact Dr. Craig F. Morris, Director USDA-ARS Western Wheat Quality Laboratory, at or 509-335-4062.

Jointed Goatgrass Biotype Resistant to Beyond Discovered in Eastern Washington

The first case of jointed goatgrass resistant to imazamox, the active ingredient in Beyond herbicide, has been confirmed in Eastern Washington. A team of Washington State University scientists, led by Dr. Ian Burke, publicly announced their findings in the January 2017 issue of Wheat Life magazine.

Clearfield wheat varieties were first planted in Eastern Washington on a widespread basis beginning in the fall of 2003. The fact that it has taken 13 years to discover the first imazamox-resistant jointed goatgrass biotype is a bit of a surprise. Ian Burke said “If you had asked me back when I started working on this in 2006 when to expect to see resistance to Beyond in jointed goatgrass, I would have said ‘we should see it already!’”

The resistant biotype is 144 times more resistant than susceptible goatgrass plants. To see even a little response in the resistant plants, researchers had to use 6x the labeled use rate of Beyond. Jeannette Rodriguez, a WSU graduate student, is working to identify the mechanism of resistance. It is known that resistance in this instance was not the result of a cross between Clearfield wheat and jointed goatgrass.

Growers and fieldmen should scout jointed goatgrass patches in fields that they manage and submit samples that they have concerns about to the WSU Herbicide Resistance Testing Program. The Extension publication “Strategies to Minimize the Risk of Herbicide-resistant Jointed Goatgrass” provides information on the control of jointed goatgrass with an emphasis on prevention and management of herbicide resistance.

BASF issued the following statement in response to this discovery: “BASF is supporting WSU research aimed at preserving the long-term benefits of the Clearfield® Production System – with an emphasis on resistant jointed goatgrass. A multifaceted resistance management program is essential to preserve the long-term benefits of Beyond herbicide and the Clearfield Production System. Wheat producers are asked to help protect and prolong the usefulness of these technologies by following the specific recommendations and requirements highlighted in the Clearfield Stewardship Guidelines to help prevent the onset of herbicide resistance in weeds.”

For more information, contact Dr. Ian Burke at or 509-335-2858.

Washington State University